
Tubes Documentation
Release 0.0.0

Twisted Matrix Labs

Nov 25, 2017

Contents

1 An Introduction to Tubes 3
1.1 What Are Tubes? . 3
1.2 Getting Connected: an Echo Server . 3
1.3 Processing A Little Data: Reversing A String . 5
1.4 Managing State with a Tube: A Networked Calculator . 6

2 Tubes Versus Protocols 9

3 Indices and tables 11

i

ii

Tubes Documentation, Release 0.0.0

Contents:

Contents 1

Tubes Documentation, Release 0.0.0

2 Contents

CHAPTER 1

An Introduction to Tubes

1.1 What Are Tubes?

The tubes package provides composable flow-control and data processing.

Flow-control is control over the source, destination, and rate of data being processed. Tubes implements this in a
type-agnostic way, meaning that a set of rules for controlling the flow of data can control that flow regardless of the
type of that data, from raw streams of bytes to application-specific messages and back again.

Composable data processing refers to processing that can occur in independent units. For example, the conversion
of a continuous stream of bytes into a discrete sequence of messages can be implemented independently from the
presentation of or reactions to those messages. This allows for similar messages to be relayed in different formats and
by different protocols, but be processed by the same code.

In this document, you will learn how to compose founts (places where data comes from), drains (places where data
goes to), and tubes (things that modify data by converting inputs to outputs). You’ll also learn how to create your own
tubes to perform your own conversions of input to output. By the end, you should be able to put a series of tubes onto
the Internet as a server or a client.

1.2 Getting Connected: an Echo Server

Let’s start with an example. The simplest way to process any data is to avoid processing it entirely, to pass input
straight on to output. On a network, that means an echo server as described in RFC 862. Here’s a function which uses
interfaces defined by tubes to send its input straight on to its output:

def echo(flow):
flow.fount.flowTo(flow.drain)

In the above example, echo requires a flow as an argument. A Flow represents the connection that we just received:
a stream of inbound data, which we call a fount, and a stream of outbound data, which we call a drain. As such, it
has 2 attributes: .fount, which is a fount, or a source of data, and .drain, which is a drain , or a place where

3

https://twisted.github.io/tubes/docs/tubes.html
https://tools.ietf.org/html/rfc862.html
https://twisted.github.io/tubes/docs/tubes.listening.Flow.html
https://twisted.github.io/tubes/docs/tubes.itube.IFount.html
https://twisted.github.io/tubes/docs/tubes.itube.IDrain.html

Tubes Documentation, Release 0.0.0

data eventually goes. This object is called a “flow”, because it establishes a flow of data from one place to and from
another.

Let’s look at the full example that turns echo into a real server.

echoflow.py

from tubes.protocol import flowFountFromEndpoint
from tubes.listening import Listener

from twisted.internet.endpoints import serverFromString
from twisted.internet.defer import Deferred, inlineCallbacks

def echo(flow):
flow.fount.flowTo(flow.drain)

@inlineCallbacks
def main(reactor, listenOn="stdio:"):

listener = Listener(echo)
endpoint = serverFromString(reactor, listenOn)
flowFount = yield flowFountFromEndpoint(endpoint)
flowFount.flowTo(listener)
yield Deferred()

if __name__ == '__main__':
from twisted.internet.task import react
from sys import argv
react(main, argv[1:])

To use echo as a server, first we have to tell Tubes that it’s a drain that wants flows. We do this by wrapping it in a
Listener.

Next, we need to actually listen on a port: we do this with Twisted’s “endpoints” API ; specifically, we use
serverFromString on the string "stdio:" by default, which treats the console as an incoming connection
so we can type directly into it, and see the results as output.

Next, we need to convert this endpoint into a fount with an outputType of Flow. To do this, we use the aptly named
flowFountFromEndpoint.

Finally, we connect the listening socket with our application via flowFount.flowTo(listening).

This fully-functioning example (just run it with “python echoflow.py”) implements an echo server. By default,
you can test it out by typing into it.

$ python echoflow.py
are you an echo server?
are you an echo server?
^C

If you want to see this run on a network, you can give it an endpoint description. For example, to run on TCP port
4321:

$ python echoflow.py tcp:4321

and then in another command-line window:

$ telnet 127.0.0.1 4321
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

4 Chapter 1. An Introduction to Tubes

https://twisted.github.io/tubes/docs/tubes.itube.IDrain.html
https://twisted.github.io/tubes/docs/tubes.listening.Flow.html
https://twisted.github.io/tubes/docs/tubes.listening.Listener.html
https://twistedmatrix.com/documents/current/core/howto/endpoints.html
https://twisted.github.io/tubes/docs/tubes.itube.IFount.html
https://twisted.github.io/tubes/docs/tubes.listening.Flow.html
https://twisted.github.io/tubes/docs/tubes.protocol.flowFountFromEndpoint.html

Tubes Documentation, Release 0.0.0

are you an echo server?
are you an echo server?
^]
telnet> close
Connection closed.

You can test it out with telnet localhost 4321.

Note: If you are on Windows, telnet is not installed by default. If you see an error message like:

'telnet' is not recognized as an internal or external command,
operable program or batch file.

then you can install telnet by running the command

C:\> dism /online /Enable-Feature /FeatureName:TelnetClient

in an Administrator command-prompt first.

However, this example still performs no processing of the data that it is receiving.

1.2.1 A Brief Aside About Types

Each fount, and each drain, have a type associated with them: in the fount’s case, the type of data it produces, and in
the drain’s case, the type of data that it accepts. You can inspect these using the outputType and inputType attributes
of founts and drains respectively. Even in our tiny example, we already have two types of founts: a fount of bytes
— one for each connection — and a fount of flows — the listening port). We have a drain for bytes, also on each
connection, and a drain for flows: the listener wrapped around echo.

Attempting to hook up a fount and a drain of mismatched types should result in an immediate TypeError, which
is a helpful debugging tool. (However, it’s the responsibility of the specific fount and drain implementation, and
those which have an inputType or outputType of None will not be checked, so you can’t rely on this always
happening.) Always make sure you’ve matched up the expected types of the output of your founts and the input of the
drains they’re connected to.

1.3 Processing A Little Data: Reversing A String

Let’s perform some very simple processing on our input data: we will reverse each line that we receive.

This immediately raises the question: how do we tell when we have received a whole line? The previous echo example
didn’t care because it would just emit whatever bytes were sent to it, regardless of whether it had received a whole
message or not. (It just so happens that your terminal only sends the bytes when you hit the “enter” key.) We can’t just
split up the incoming data with bytes.split because we might receive one line, part of a line, or multiple lines in
one network message. Luckily Tubes implements this for us, with the handy tubes.framing module (so called because
it puts “frames” around chunks of bytes, and you can distinguish one chunk from the next).

Note: There are many types of framing mechanisms, and the one we’re demonstrating here, line-oriented message
separation, while it is extremely common, is one of the worst ones. For example, a line-delimited message obviously
cannot include a newline, and if you try to transmit one that does, you may get a garbled data stream. The main
advantage of a line-separated protocol is that it works well for interactive examples, since a human being can type

1.3. Processing A Little Data: Reversing A String 5

https://twisted.github.io/tubes/docs/tubes.itube.IFount.outputType.html
https://twisted.github.io/tubes/docs/tubes.itube.IDrain.inputType.html
https://twisted.github.io/tubes/docs/tubes.listening.Flow.html
https://twisted.github.io/tubes/docs/tubes.listening.Flow.html
https://twisted.github.io/tubes/docs/tubes.listening.Listener.html
https://twisted.github.io/tubes/docs/tubes.framing.html

Tubes Documentation, Release 0.0.0

lines into a terminal. For example, it works well for documentation :-). However, if you’re designing your own
network protocol, please consider using a length-prefixed framing mechanism, such as netstrings.

Much like in the echo example, we need a function which accepts a flow which sets up the flow of data from a fount
to a drain on an individual connection.

def reverseFlow(flow):
from tubes.framing import bytesToLines, linesToBytes
lineReverser = series(bytesToLines(), Reverser(), linesToBytes())
flow.fount.flowTo(lineReverser).flowTo(flow.drain)

In this function, we create a new type of object, a series of Tubes, created by the series function. You can read the
construction of the lineReverser series as a flow of data from left to right. The output from each tube in the series
is passed as the input to the tube to its right.

We are expecting a stream of bytes as our input, because that’s the only thing that ever comes in from a network.
Therefore the first element in the series, bytesToLines, as its name implies, converts the stream of bytes into a sequence
of lines. The next element in the series, Reverser, reverses its inputs, which, being the output of bytesToLines, are
lines.

Reverser is implemented like so:

class Reverser(object):
def received(self, item):

yield b"".join(reversed(item))

1.4 Managing State with a Tube: A Networked Calculator

To demonstrate both receiving and processing data, let’s write a reverse Polish notation calculator for addition and
multiplication.

Interacting with it should look like this:

3
4
+
7
2

*
14

In order to implement this program, you will construct a series of objects which process the data; specifically, you will
create a series of Tubes. Each tubes.Tube in the tubes.series will be responsible for processing part of the data.

Lets get started with just the core component that will actually perform calculations.

class Calculator(object):
def __init__(self):

self.stack = []

def push(self, number):
self.stack.append(number)

def do(self, operator):
left = self.stack.pop()
right = self.stack.pop()

6 Chapter 1. An Introduction to Tubes

https://twisted.github.io/tubes/docs/tubes.framing.netstringsToStrings.html
https://twisted.github.io/tubes/docs/tubes.tube.series.html
https://twisted.github.io/tubes/docs/tubes.framing.bytesToLines.html
https://twisted.github.io/tubes/docs/tubes.framing.bytesToLines.html
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://twisted.github.io/tubes/docs/tubes.series.html
https://twisted.github.io/tubes/docs/tubes.Tube.html
https://twisted.github.io/tubes/docs/tubes.Tube.html
https://twisted.github.io/tubes/docs/tubes.series.html

Tubes Documentation, Release 0.0.0

result = operator(left, right)
self.push(result)
return result

Calculator gives you an API for pushing numbers onto a stack, and for performing an operation on the top two
items in the stack, the result of which is then pushed to the top of the stack.

Now let’s look at the full flow which will pass inputs to a Calculator and relay its output:

def calculatorSeries():
from tubes.tube import series
from tubes.framing import bytesToLines, linesToBytes

return series(
bytesToLines(),
linesToNumbersOrOperators,
CalculatingTube(Calculator()),
numbersToLines,
linesToBytes()

)

The first tube in this series, provided by the tubes.framing module, transforms a stream of bytes into lines. Then,
linesToNumbersOrOperators - which you’ll write in a moment - should transform lines into a combination
of numbers and operators (functions that perform the work of the "+" and "*" commands), then from numbers
and operators into more numbers - sums and products - from those integers into lines, and finally from those lines
into newline-terminated segments of data that are sent back out. A CalculatingTube should pass those numbers
and operators to a Calculator, and produce numbers as output. numbersToLines should convert the output
numbers into byte strings, and linesToBytes performs the inverse of bytesToLines by appending newlines to those
outputs.

Let’s look at linesToNumbersOrOperators.

@tube
def linesToNumbersOrOperators(line):

from operator import add, mul
try:

yield int(line)
except ValueError:

if line == '+':
yield add

elif line == '*':
yield mul

ITube.received takes an input and produces an iterable of outputs. A tube’s input is the output of the tube preceding it
in the series. In this case, linesToNumbersOrOperators receives the output of bytesToLines, which outputs se-
quences of bytes (without a trailing line separator). Given the specification for the RPN calculator’s input above, those
lines may contain ASCII integers (like b"123") or ASCII characters representing arithmetic operations (b"+" or
b"*"). linesToNumbersOrOperators output falls into two categories: each line containing decimal numbers
results in an integer output, and each operator character is represented by a python function object that can perform
that operation.

Now that you’ve parsed those inputs into meaningful values, you can send them on to the Calculator for process-
ing.

@tube
class CalculatingTube(object):

def __init__(self, calculator):
self.calculator = calculator

1.4. Managing State with a Tube: A Networked Calculator 7

https://twisted.github.io/tubes/docs/tubes.framing.html
https://twisted.github.io/tubes/docs/ITube.received.html
https://twisted.github.io/tubes/docs/bytesToLines.html

Tubes Documentation, Release 0.0.0

def received(self, value):
if isinstance(value, int):

self.calculator.push(value)
else:

yield self.calculator.do(value)

CalculatingTube takes a Calculator to its constructor, and provides a received method which takes, as input,
the outputs produced by LinesToNumbersOrOperators. It needs to distinguish between the two types it might be
handling — integers, or operators — and it does so with isinstance. When it is handling an integer, it pushes that value
onto its calculator’s stack, and, importantly, does not produce any output. When it is handling an operator, it applies
that operator with its calculator’s do method, and outputs the result (which will be an integer).

Unlike linesToNumbersOrOperators, CalculatingTube is stateful. It does not produce an output for
every input. It only produces output when it encounters an operator.

Finally we need to move this output along so that the user can see it.

To do this, we use the very simple numbersToLines which takes integer inputs and transforms them into ASCII
bytes.

@tube
def numbersToLines(value):

yield str(value).encode("ascii")

Like linesToNumbersOrOperators, numbersToLines is stateless, and produces one output for every input.

Before sending the output back to the user, you need to add a newline to each number so it is legible to the user.
Otherwise the distinct numbers “3”, “4”, and “5” would show up as “345”.

For this, we use the aforementioned bytesToLines tube, which appends newlines to its inputs.

8 Chapter 1. An Introduction to Tubes

CHAPTER 2

Tubes Versus Protocols

If you’ve used Twisted before, you may notice that half of the line-splitting above is exactly what LineReceiver does,
and that there are lots of related classes that can do similar things for other message types. The other half is handled
by producers and consumers. tubes is a newer interface than those things, and you will find it somewhat improved.
If you’re writing new code, you should generally prefer to use tubes.

There are three ways in which tubes is better than using producers, consumers, and the various XXXReceiver
classes directly.

1. tubes is general purpose. Whereas each FooReceiver class receives Foo objects in its own way, tubes
provides consistent, re-usable abstractions for sending and receiving.

2. tubes does not require subclassing. The fact that different responsibilities live in different objects makes it
easier to test and instrument them.

3. tubes handles flow-control automatically. The manual flow-control notifications provided by IProducer
and IConsumer are still used internally in tubes to hook up to twisted.internet, but the interfaces
defined in tubes itself are considerably more flexible, as they allow you to hook together chains of arbitrary
length, as opposed to just getting buffer notifications for a single connection to a single object.

9

http://twistedmatrix.com/documents/current/api/twisted.protocols.basic.LineReceiver.html
https://twistedmatrix.com/documents/current/core/howto/producers.html

Tubes Documentation, Release 0.0.0

10 Chapter 2. Tubes Versus Protocols

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

Tubes Documentation, Release 0.0.0

12 Chapter 3. Indices and tables

Index

R
RFC

RFC 862, 3

13

	An Introduction to Tubes
	What Are Tubes?
	Getting Connected: an Echo Server
	Processing A Little Data: Reversing A String
	Managing State with a Tube: A Networked Calculator

	Tubes Versus Protocols
	Indices and tables

